

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Determination of Trace Copper by Solid Substrate-Room Temperature Phosphorescence Quenching Method Based on Lead Carboxymethyl Cellulose $[Pb(CMC)_2]$ Particles Containing Luminescent Salicyl Fluorones Molecules

Jia-Ming Liu^a; Xuan Lin^a; Shan-Shan Xu^a; Qiao-Mei Lu^a; Li-Qing Zeng^a; Shao-Qin Lin^b

^a Department of Chemistry, Zhangzhou Normal College, Zhangzhou, People's Republic of China ^b

Fujian Education College, Fujian, Fuzhou, People's Republic of China

To cite this Article Liu, Jia-Ming , Lin, Xuan , Xu, Shan-Shan , Lu, Qiao-Mei , Zeng, Li-Qing and Lin, Shao-Qin(2006) 'Determination of Trace Copper by Solid Substrate-Room Temperature Phosphorescence Quenching Method Based on Lead Carboxymethyl Cellulose $[Pb(CMC)_2]$ Particles Containing Luminescent Salicyl Fluorones Molecules', *Spectroscopy Letters*, 39: 4, 311 – 320

To link to this Article: DOI: 10.1080/00387010600779179

URL: <http://dx.doi.org/10.1080/00387010600779179>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Determination of Trace Copper by Solid Substrate–Room Temperature Phosphorescence Quenching Method Based on Lead Carboxymethyl Cellulose [Pb(CMC)₂] Particles Containing Luminescent Salicyl Fluorones Molecules

Jia-Ming Liu, Xuan Lin, Shan-Shan Xu, Qiao-Mei Lu, and Li-Qing Zeng

Department of Chemistry, Zhangzhou Normal College, Zhangzhou,
People's Republic of China

Shao-Qin Lin

Fujian Education College, Fujian, Fuzhou, People's Republic of China

Abstract: Luminescent particles of lead carboxymethyl cellulose [Pb(CMC)₂] that contain luminescent salicyl fluorones (SAF) {[Pb(CMC)₂]-SAF} were synthesized by sol-gel method, using sodium carboxymethyl cellulose (NaCMC) as precursor and Pb²⁺ as precipitator. [Pb(CMC)₂]-SAF can emit intense and stable solid substrate–room temperature phosphorescence (SS-RTP) on filter paper. EDTA (ethylenediamine-tetraacetic acid) can chelate the Pb²⁺ in [Pb(CMC)₂]-SAF, causing it to decompose into aqueous soluble components PbY²⁻, CMC⁻, and SAF, and these components can react with Cu²⁺ to form [Cu(CMC)₂]-SAF, causing decrease of phosphorescence intensity. Based on the facts above, a new method for the determination of trace mercury by SS-RTP quenching method was established. This method has been applied to the determination of trace copper in human hair and tea samples with satisfactory results.

Keywords: Determination of copper, quenching method, solid substrate–room temperature phosphorescence

Received 11 June 2005, Accepted 1 May 2006

Address correspondence to Jia-Ming Liu, Department of Chemistry, Zhangzhou Normal College, Zhangzhou 363000, People's Republic of China. E-mail: zzsyliujiaming@163.com

INTRODUCTION

During recent years, many methods for the determination of trace copper have been reported, such as atomic absorption spectra method (limit of detection: 2.0×10^{-11} g mL $^{-1}$, 4.0×10^{-10} g mL $^{-1}$, 2.0×10^{-10} g mL $^{-1}$),^[1-3] spectrophotometry (LD: 1.2×10^{-10} g mL $^{-1}$),^[4] ICP method (LD: 9.4×10^{-11} g mL $^{-1}$),^[5] catalytic kinetic discoloring spectrophotometry (LD: 1.92×10^{-9} g mL $^{-1}$),^[6] fluorescence quenching method (LD: 2.2×10^{-10} g mL $^{-1}$),^[7] low-pressure ion chromatography–chemiluminescence method (LD: 1.0×10^{-7} g mL $^{-1}$),^[8] diode array detector–laser induced spectrophotofluorimeter (LD: 5.0×10^{-10} g mL $^{-1}$),^[9] CdS fluorescence probes method (LD: 2.3×10^{-10} g mL $^{-1}$),^[10] photometric analysis using SAF as chromogenic reagent such as salicyl group fluorone and polyglycol caprylphenyl ether ($\epsilon = 1.32 \times 10^5$ L mol $^{-1}$ cm $^{-1}$),^[11] and cetyltrimethylammonium bromide–salicyl fluorone ($\epsilon = 1.3 \times 10^5$ L mol $^{-1}$ cm $^{-1}$).^[12] Luminescent particles of lead carboxymethyl cellulose [Pb(CMC) $_2$]-SAF that contain salicyl fluorones (SAF) and [Pb(CMC) $_2$] were synthesized by sol-gel method, using sodium carboxymethyl cellulose (NaCMC) as precursor and Pb $^{2+}$ as precipitator. [Pb(CMC) $_2$]-SAF can emit intense and stable solid substrate–room temperature phosphorescence (SS-RTP) on filter paper. EDTA can chelate the Pb $^{2+}$ in [Pb(CMC) $_2$]-SAF, causing it to decompose into aqueous soluble components PbY $^{2-}$, CMC $^-$, and SAF, and these components can react with Cu $^{2+}$ to form [Cu(CMC) $_2$]-SAF, causing the quenching of SS-RTP of [Pb(CMC) $_2$]-SAF. Thus, a new method for the determination of trace copper by SS-RTP quenching method was established, with a detection limit of 0.15 fg spot $^{-1}$ (3.75×10^{-13} g mL $^{-1}$), which is 5.9×10^2 times lower than the lowest detection limit^[5] reported before. This sensitive, rapid, and repeatable method has been applied to the determination of trace copper in human hair and tea samples successfully. SS-RTP quenching method based on [Pb(CMC) $_2$]-SAF luminescent particles for the determination of copper has not been reported yet.

MATERIALS AND METHOD

Apparatus and Reagent

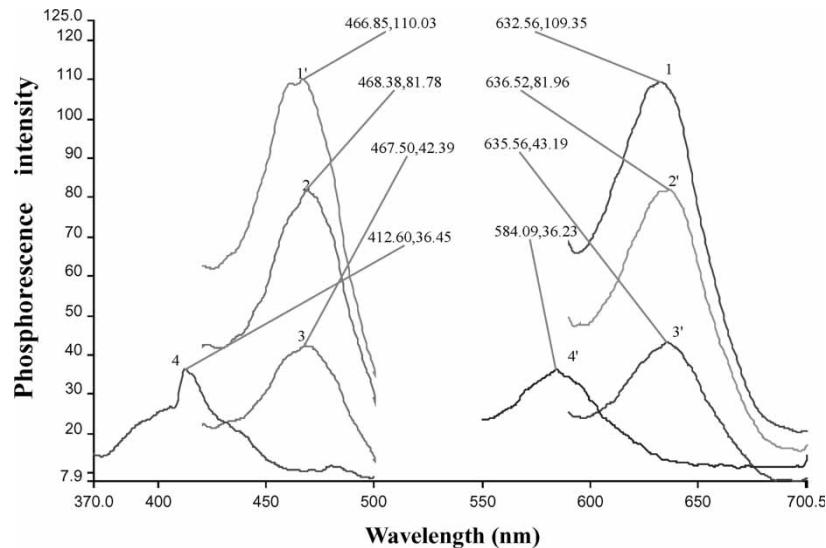
Perkin Elmer LS-55 luminescence spectrophotometer (main parameters are delay time, 0.1 ms; gate time, 2.0 ms; cycle time, 20 ms; flash count, 1; Ex. Slit, 10 nm; Em. Slit, 15 nm; scan speed, 1500 nm min $^{-1}$); pH-3B precision acidometer (Shanghai Medical Laser Instrument Plant, Shanghai, China); 85-1 constant temperature magnetic stirrer (ShenZhen Tian-nan-hai-bei Company, Shenzhen, China); AE240 Electronic analytical balance (Mettler-Toledo Instruments Shanghai Company, Shanghai, China); 0.5- μ L flat-head micrometer syringe (Shanghai Medical Laser Instrument Plant, Shanghai, China).

Cu^{2+} primary standard reagent, 1.00 mg mL^{-1} (GSBG 62069-90 8101, $\text{Cu}(\text{NO}_3)_2$) was diluted to 1.0 $\mu\text{g mL}^{-1}$, then diluted to 0.010 ng mL^{-1} and 1.00 ng mL^{-1} as working solution before used; 0.1% (w/v) NaCMC solution; 1.0×10^{-4} mol L^{-1} SAF ethanol solution; 5.0×10^{-3} mol L^{-1} Pb^{2+} [$\text{Pb}(\text{Ac})_2$] solution; 1% (w/v) EDTA solution; thrice distilled water. All the reagents are A.R. (analytical reagent) grade except that Cu^{2+} is primary standard.

Filter paper (HangZhou Xin-Hua Paper Corporation, Hangzhou, China) was precut into small wafers ($\Phi = 15$ mm), with a ring indentation ($\Phi = 4.0$ mm) at the center of each wafer made by a standard pinhole plotter; acetylcellulose membrane, nitrocellulose membrane and polyamide membrane (Lu-qiao-si-jia Biochemical Plastic Plant, Zhejiang, China).

Preparation of $[\text{Pb}(\text{CMC})_2]$ -SAF Particle

To 50.00 mL of NaCMC solution, 50.00 mL of SAF solution was added, and then 10.00 mL of Pb^{2+} was added dropwise. Standing for 10 min to precipitate completely, the mixture was centrifuged and washed with water until there was no lead ion (test by sulfuric acid). After dried and being ground, rose powder of $[\text{Pb}(\text{CMC})_2]$ -SAF was obtained.


Measurement of SS-RTP

$[\text{Pb}(\text{CMC})_2]$ -SAF 100 mg dry powder was dissolved in 1% EDTA solution, then diluted to 100.0 mL. To a 10-mL cuvette, 1.00 mL of above solution and some copper were added, then diluted to scale graduation line and mixed homogeneously, then stood at room temperature for 10 min. Filter papers ($\Phi = 15$ mm) were immersed in $\text{Pb}(\text{Ac})_2$ solution (1.0 mol L^{-1}) for 10 s and then dried at $90 \pm 1^\circ\text{C}$ for 2 min. A 0.4- μL drop of test solution was suspended onto the indentation center of filter paper by a 0.5- μL flat-head micrometer syringe and then the paper wafer was dried for at $90 \pm 1^\circ\text{C}$ for 2 min. The phosphorescence intensity was directly measured at wavelengths $\lambda_{\text{ex}}/\lambda_{\text{em}} = 467/637$ nm. The signal of filter paper substrate is defined as the background intensity (I_{p_0}), the signal of $[\text{Pb}(\text{CMC})_2]$ -SAF-EDTA system (without Cu^{2+}) is defined as reagent blank intensity (I_{p_1}), and the signal of $[\text{Pb}(\text{CMC})_2]$ -SAF-EDTA- Cu^{2+} system is defined as sample intensity for test solution (I_{p_2}). Then $\Delta I_p (=I_{p_2} - I_{p_1})$ and the sample/background ratio ($=I_{p_2}/I_{p_0}$) were also calculated.

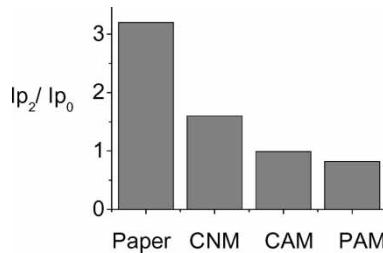
RESULTS AND DISCUSSION

Phosphorescence and Fluorescence Spectra

The phosphorescence and fluorescence spectra of $[\text{Pb}(\text{CMC})_2]$ -SAF, $\text{Pb}(\text{CMC})_2$ -SAF- Cu^{2+} solution are shown in Fig. 1. Results showed that

Figure 1. SS-RTP spectra for the $[\text{Pb}(\text{CMC})_2\text{-SAF}]\text{-EDTA}\text{-Cu}^{2+}$ system: 1, 1', $[\text{Pb}(\text{CMC})_2]\text{-SAF-EDTA}$; 2, 2', 1, 1' + 0.050 ng Cu^{2+} ; 3, 3', 1, 1' + 1.0 ng Cu^{2+} ; 4, 4', filter paper.

$[\text{Pb}(\text{CMC})_2]\text{-SAF}$ can emit intense and stable SS-RTP on filter paper at wavelengths $\lambda_{\text{ex}}/\lambda_{\text{em}} = 467/634$ nm. When $[\text{Pb}(\text{CMC})_2]\text{-SAF}$ was dissolved by EDTA and trace copper was added to the system, the phosphorescence intensity was quenched, and the $\lambda_{\text{ex}}/\lambda_{\text{em}}$ moved to 468/637 nm, which was chosen as the working wavelength for the determination of trace copper.


Optimum Conditions

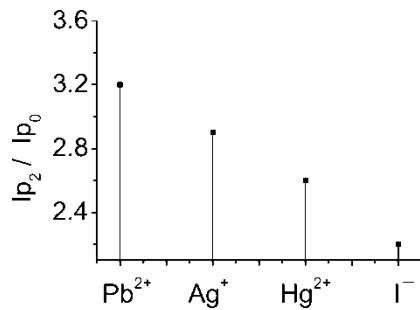
Selection of Solid Substrate

For the system containing $1.00 \text{ ng mL}^{-1} \text{ Cu}^{2+}$, according to the method described above, the SS-RTP spectra of the same test solution were measured at working wavelength $\lambda_{\text{ex}}/\lambda_{\text{em}} = 468/637$ nm on four kinds of substrates: polyamide membrane (PAM), cellulose acetate membrane (CAM), cellulose nitrate membrane (CNM) and filter paper, respectively. The results showed that the signal/background ratio on filter paper was the highest (Fig. 2), so filter paper was selected as the solid substrate in the following experiment.

The Concentration and Volume of Reagents

For the system containing $1.00 \text{ ng mL}^{-1} \text{ Cu}^{2+}$, the volumes of different reagents were changed. Results showed that when the volume and

Figure 2. Effects of solid substrate on I_p2/I_p0 for system.


concentration were 5.00 mL 0.1% NaCMC, 5.00 mL 1.0×10^{-4} mol L⁻¹ SAF alcohol solution, 2.00 mL 5.0×10^{-3} mol L⁻¹ Pb²⁺ solution, and 2.00 mL 1.0% EDTA solution, ΔI_p reached the maximum.

Heavy Atom Effect

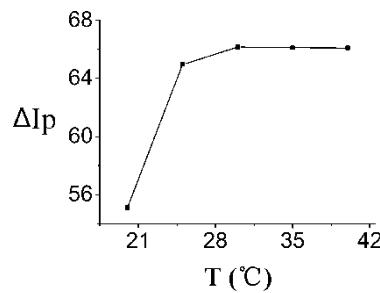

For the system containing 1.00 ng mL⁻¹ Cu²⁺, the effects of heavy atoms such as Pb²⁺, Ag⁺, Hg²⁺, and I⁻ (mol L⁻¹) on signal/background ratio of the system were examined, respectively. The results showed that I_p2/I_p0 of Pb²⁺ was the highest, so it was chosen as ion perturber (Fig. 3).

Time and Temperature for Reaction

The experiment showed that under the optimal condition above, when the reaction was carried out at 30°C for 10 min, the ΔI_p reached the max and stayed stable (Figs. 4 and 5). In the measurement of phosphorescence, the filter paper was immersed in 1.0 mol L⁻¹ Pb(Ac)₂ and 2.0 mol L⁻¹ HAc-Pb(Ac)₂ solution for 10 s, and the paper sheet was dried at $90 \pm 1^\circ\text{C}$ for 2 min. Then a ring indentation was made and the sample solution was

Figure 3. Effects of heavy atoms on I_p2/I_p0 for system.

Figure 4. Effect of time on ΔI_p for reaction system.


suspended onto the indentation center of the paper sheet. The paper sheet was dried at $90 \pm 1^\circ\text{C}$ for 2 min. The ΔI_p reached the max.

Analytical Parameters

When the content of Cu^{2+} is in the range 8.0–40.0 fg spot⁻¹ (corresponding concentration of Cu^{2+} is 20.0–100.0 pg mL⁻¹, with a sample volume of 0.4 μL), ΔI_p has a good linear correlation with the content of Cu^{2+} . The regression equation ($n = 8$), r , LOD (calculation by 3Sb/k) and RSD% ($n = 11$) are listed in Table 1.

The Lifetime of Phosphorescence

For the sample containing 40.0 fg spot⁻¹ Cu^{2+} , the SS-RTP lifetime (τ) obtained by phosphorescence attenuation curve (delay time, 0.1–2.0 ms; gate time, 2.0 ms) is 88.10 ms (Fig. 6). According to the method described in literature,^[13] the regression equation of the attenuation curve can be expressed as $\ln I_p = 3.283 - 0.01135t$ ($r = -0.9998$).

Figure 5. Effect of temperature on ΔI_p for reaction system.

Table 1. Comparison of methods

Method	Analytical range	The regression equation	<i>r</i>	LOD	RSD (%)	Method of determination
Proposed Method	8.0–40.0 (fg spot ⁻¹) 20.0–100.0 (pg mL ⁻¹)	$\Delta I_p = 24.82 + 1.037 m \text{Cu}^{2+}$ fg spot ⁻¹ (<i>n</i> = 8)	0.9992	2.2 (fg spot ⁻¹) 0.375 (pg mL ⁻¹) (<i>n</i> = 8)	3.6–4.0 0.3–5.0	SS-RTP
Ref. [1]				0.02 (ng mL ⁻¹)	0.3–5.0	AAS
Ref. [2]				0.4 (ng mL ⁻¹)	3.6	AAS
Ref. [3]				0.2 (ng mL ⁻¹)	0.6–2.1	AAS
Ref. [4]				0.12 (ng mL ⁻¹)	0.6–2.2	Spectrophotometer
Ref. [5]				0.094 (ng mL ⁻¹)	1.37	ICP
Ref. [6]	0–22 (ng mL ⁻¹)	$\Delta A = -0.103089 + 0.101817 C (\mu\text{g L}^{-1})$	0.9996	1.92 (ng mL ⁻¹)	1.16	Discoloring spectrophotometry
Ref. [7]	0.0–60.0 (ng mL ⁻¹)	$F = 74.73 + 0.401 C \text{Cu}^{2+}$ ($\mu\text{g L}^{-1}$)	-0.9983	0.22 (ng mL ⁻¹)	1.1	Fluorescence quenching method
Ref. [8]	0.4–60.0 ($\mu\text{g mL}^{-1}$)	$I = -13947 + 3125 C$ (mg L^{-1})	0.9955	0.10 ($\mu\text{g mL}^{-1}$)	3.2	Chromatography and chemiluminescence
Ref. [9]	0.5–4.0 (ng mL ⁻¹)	$\Delta F = 0.09 + 4221.5 C$ ($\mu\text{g L}^{-1}$)	0.9986	0.5 (ng mL ⁻¹)		Laser induced spectrofluorimetry
Ref. [10]	2.0–24.0 (ng mL ⁻¹)	$\Delta F = -1.20 + 1.54 C$ ($\mu\text{g L}^{-1}$)	0.9987	0.5 (ng mL ⁻¹)		Fluorescence probes

$A_3 \Delta I_p = (I_{p2} - I_{p1})$, and the signal of $[\text{Pb}(\text{CMC})_2]\text{-SAF-EDTA}$ system (without Cu^{2+}) is defined as a reagent blank intensity (I_{p1}), and the signal of $[\text{Pb}(\text{CMC})_2]\text{-SAF-EDTA-Cu}^{2+}$ system is defined as sample intensity for test solution (I_{p2}).

$\Delta A = (A_2 - A_1)$ (A_1 is defined as reagent blank absorbency, and A_2 is defined as sample absorbency for test solution).

F is defined as intensity of fluorescence.

C is defined as column of test solution.

I is defined as intensity of chemiluminescence.

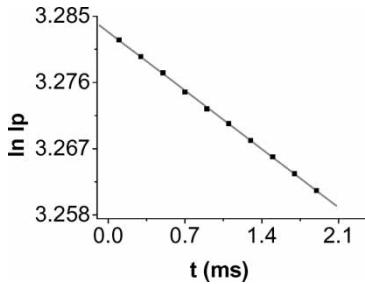


Figure 6. Phosphorescence attenuation curve.

Interference Experiment

For the sample containing $0.10 \text{ ng mL}^{-1} \text{ Cu}^{2+}$, the allowed concentration (multiple) of coexistent ions ($E_r = \pm 5\%$) were as follows: Na^+ , K^+ , NH_4^+ , F^- , Cl^- , Br^- , S^{2-} , SO_3^{2-} , SO_4^{2-} (5000); Ni^{2+} , Mn^{2+} , Pb^{2+} , CO_3^{2-} , PO_4^{3-} , $\text{C}_2\text{O}_4^{2-}$ (500); NO_2^- , NO_3^- , SCN^- (300); Cd^{2+} , Bi^{3+} , Pb^{2+} (200); Ca^{2+} , Mg^{2+} , Cr^{3+} , Fe^{3+} (150); Co^{2+} , Al^{3+} , Fe^{2+} , Zn^{2+} (100).

Analysis of Samples

Pretreatment methods of samples are as follows: for hair sample, 0.2 g (± 0.1 mg) of hair was charred and dried, then charred in a muffle at 500–550°C for 3 h, then it was dissolved and diluted to 50 mL by water. One milliliter of the above solution was taken and diluted to 50 mL; for tea sample, 0.2 g (± 0.1 mg) of tea sample was digested by $\text{HNO}_3/\text{HClO}_4$ (1:3) to colorless and then diluted to 100 mL; 1.0 mL was taken and diluted to 50 mL. The concentration of Cu^{2+} in the sample solutions was determined by the experimental method mentioned above. A recovery experiment was also conducted while adding standard solution. A comparative test with AAS method was also carried out. The results are listed in Table 2.

Table 2. The analytical results of Cu^{2+} in hair and tea samples ($n = 7$)

Samples	Present method ($\mu\text{g/g}$)	Added ($\mu\text{g/g}$)	Obtained ($\mu\text{g/g}$)	Recovery rate (%)	RSD (%)	AAS method ($\mu\text{g/g}$)
Hair	12.0	1.0	1.01	101	4.2	11.7
Tea	17.2	2.0	0.99	99.0	2.9	16.7

CONCLUSIONS

The synthesized $[\text{Pb}(\text{CMC})_2\text{-SAF}]$ particles by the sol-gel method can emit strong and stable SS-RTP on filter paper. Cu^{2+} can quench the phosphorescence of $[\text{Pb}(\text{CMC})_2\text{-SAF}]$ system, so new methods for the determination of trace Cu^{2+} can be established based on quenching of phosphorescence. This method has high sensitivity, accurate, celerity, and repeatability and is useful for the detection of ultratrace copper.

ACKNOWLEDGMENT

This work was supported by Fu jian Province Natural Science Foundation (grant no. C 0510028, D 0510027).

REFERENCES

1. Yamini, Y.; Hassan, J.; Karbasi, M.-H. Solid-phase extraction of copper with cupron on octadecyl silica cartridge and its determination with absorption spectrometry. *Microchim. Acta* **2004**, *148* (3–4), 305–309.
2. Say, R.; Birlik, E.; Ersoz, A.; Yilmaz, F.; Gedikbey, T.; Denizli, A. Preconcentration of copper on ion-selective imprinted polymer microbeads. *Anal. Chim. Acta* **2003**, *480*, 251–258.
3. Shamsipur, M.; Avanes, A.; Rofouei, M. K.; Sharghi, H.; Aghapur, G. Solid phase extraction and determination of ultra trace amounts of copper (II) using octadecyl silica membrane disks modified by 11-hydroxynaphthacene-5,12-quinone and flame atomic absorption spectrometry. *Talanta* **2001**, *54*, 863–869.
4. Yamini, Y.; Tamaddon, A. Solid-phase extraction and spectrophotometric determination of trace amounts of copper in water samples. *Talanta* **1999**, *49*, 119–124.
5. Ferreira, S. L. C.; Queiroz, A. S.; Fernandes, M. S.; Dos Santos, H. C. Application of factorial designs and Doehlert matrix in optimization of experimental variables associated with the preconcentration and determination of vanadium and copper in seawater by inductively coupled plasma optical emission spectrometry. *Spectrochim Acta B* **2002**, *57*, 1939–1950.
6. Zheng, H. L.; Long, T. R.; Zhu, Y. Study on determination of trace copper (II) by catalytic kinetic discoloring spectrophotometry. *Spectrosc. Spectral Anal.* **2004**, *24* (1), 114–117.
7. Liu, J. N.; Zhang, B.; Shang, H.; Zhao, J. Sh. Fluorescence quenching method for determination of with 2, 4-dihydroxyacetophenone benzalhydrazone. *Chinese J. Anal. Chem.* **2003**, *31* (5), 636.
8. Liu, L.; Zhou, G. M. On-line determination of trace copper (II) in water sample by low-pressure ion chromatography with chemiluminescence detection. *Chinese J. Anal. Chem.* **2002**, *30* (4), 478–481.
9. Luan, Ch. L.; Li, Y. Q. Determination of trace copper in food by laser induced spectrofluorimetry with diode array detection. *Chinese J. Anal. Chem.* **2001**, *29* (9), 1083–1085.

10. Wang, L. Y.; Zhu, Y. G.; Zhu, C. Q.; Wang, L. Fluorescence quenching method for the determination of trace copper (II) with CdS nanoparticles as fluorescence probes. *Chinese J. Anal. Chem.* **2002**, *30* (11), 1352–1354.
11. Kang, T. Y.; Tie, S. N. Spectrophotometric determination of trace Ti (IV) in steel with the using of salicyl group fluorone and polyglycol caprylphenyl ether. *Journal of Qinghai University (Natural Science)* **2004**, *22* (4), 53–56.
12. Liu, X. M. Determination of tungsten in copper ore by spectrophotometry with cetyltrimethylammonium bromide (CTMAB)—salicylfluorone physical testing and chemical analysis part B. *Chem. Anal.* **2004**, *40* (9), 550–551.
13. Wei, Y. Sh.; Jin, W. J.; Yang, Y.; Liu, Ch. S. Study on room temperature phosphorescence behavior of fluoranthene by laser induced time resolved technique. *Chinese J. Anal. Chem.* **1998**, *26*, 515–519.